2,129 research outputs found

    A comparison of methods to quantify prolamin contents in cereals

    Get PDF
    Hydrophobic prolamins are endosperm storage proteins accounting for about 40% of the total protein in most cereals seeds. Despite the absence of a reference method, several procedures have been periodically published to quantify prolamins in cereals. The aim of this study was to compare a conventional fractionation assay (LND) vs three other methods: one based on sequential extractions (HAM) and two rapid turbidimetric procedures (L&H and DRO). Prolamins were extracted in duplicate on barley, corn and wheat samples. For the turbidimetric prolamin evaluation in barley and wheat, a universally available purified gliadin, as alternative to purified zein, was also tested as standard reference material (SRM). The extraction prolamin values were different among grain types (P0.05). LND agreed sufficiently well both with HAM and with L&H methods (R2=0.664 and R2=0.703, respectively, P0.05), whereas a higher prolamin quantification was obtained using HAM (P<0.05). Overall, DRO did not provide similar comparison and performance parameters with respect to other method comparisons. The effect of changing purified zein with purified gliadin was noteworthy only for L&H, both for wheat and barley samples (P<0.01). Considering the increasing attention of animal nutritionists on prolamins, our results could get useful information for routine laboratories analysis

    Non-intrusive Zigbee power meter for load monitoring in smart buildings

    Get PDF
    Energy efficiency in smart buildings requires distributed sensing infrastructure to monitor the power consumption of appliances, machines and lighting sources. The analysis of current and voltage waveforms is fundamental for gathering diagnostic information about the power quality and for reducing power wastage. Moreover, it enables Non-intrusive Load Monitoring (NILM), which is the process of disaggregating a household's total electricity consumption into its contributing appliances, by analysing the voltage and current changes. In this paper, an innovative full Energy-neutral (i.e. battery free) and Non-intrusive Wireless Energy Meter (NIWEM) is presented to measure current, voltage and power factor. As key features, the NIWEM is completely non-invasive and it can self-sustain its operations by harvesting energy from the monitored load. It also features a standard (Zigbee) wireless interface for communication with the smart-building system. Experimental results have confirmed that complete energy sustainability can be achieved also with very low-power loads

    Nitrogen and energy partitioning in two genetic groups of pigs fed low-protein diets at 130 kg body weight

    Get PDF
    The aim was to evaluate the effect of low-protein (LP) or low-amino acid diets on digestibility, energy and nitrogen (N) utilisation in 2 genetic groups (GG) of pigs (129±11 kg BW). Duroc×Large White (A) pigs were chosen to represent a traditional GG for ham production, and Danbred Duroc (D) pigs to represent a GG with fast growing rate and high carcass lean yield. Dietary treatments: a conventional diet (CONV) containing 13.2% CP, and two LP diets, one with LP (10.4%) and low essential AA (LP1), the second with LP (9.7%) and high essential AA (LP2). Compared to CONV, LP2 had the same essential AA content per unit feed, while LP1 the same essential AA content per unit CP. Feed was restricted (DMI=6.8% BW0.75). Four consecutive digestibility/balances periods were conducted with 24 barrows, 12 A and 12 D. Metabolic cages and respiration chambers were used. No significant difference between diets was registered for digestibility. Nitrogen excreted: 41.3, 33.4 and 29.0 g/d (P=0.009), for CONV, LP1 and LP2 diets, respectively. Nitrogen retention was similar between the diets. Heat production (HP) was the lowest for LP diets. There was a tendency (P=0.079) for a lower energy digestibility in D group. The D pigs also had a higher HP and hence a lower retained energy in comparison with the A pigs. In conclusion: it is possible to reduce N excretion using very LP diets and LP-low AA diets; Danbred GG have a higher heat production and a lower energy retention than A pigs

    Short communication: In vitro rumen gas production and starch degradation of starch-based feeds depend on mean particle size

    Get PDF
    Our objective was to model the effect of mean particle size (mPS) on in vitro rumen starch degradation (IVSD) and the kinetics of gas production for different starch-based feeds. For each feed, 2 batches of the same grains were separately processed through 2 different mills (cutter or rotor speed mills), with or without different screens to achieve a wide range of mPS (0.32 to 3.31 mm for corn meals; 0.19 to 2.81 mm for barley meals; 0.16 to 2.13 mm for wheat meals; 0.28 to 2.32 mm for oat meals; 0.21 to 2.36 mm for rye meals; 0.40 to 1.79 for sorghum meals; 0.26 to 4.71 mm for pea meals; and 0.25 to 4.53 mm for faba meals). The IVSD data and gas production kinetics, obtained by fitting to a single-pool exponential model, were analyzed using a completely randomized design, in which the main tested effect was mPS (n = 6 for all tested meals, except n = 7 for corn meals and n = 5 for sorghum meals). Rumen inocula were collected from 2 fistulated Holstein dairy cows that were fed a total mixed ration consisting of 16.2% crude protein, 28.5% starch, and 35.0% neutral detergent fiber on a dry matter basis. The IVSD, evaluated after 7 h of rumen incubation, decreased linearly with increasing mPS for corn, barley, wheat, rye, pea, and faba meals, and decreased quadratically with increasing mPS for the other meals. The y-axis intercept for 7-h IVSD was below 90% starch for corn, barley, and rye feeds and greater than 90% for the other tested feeds. The mPS adjustment factors for the rate of rumen starch degradation varied widely among the different tested feeds. We found a linear decrease in starch degradation with increasing mPS for barley, wheat, rye, and pea meals, whereas we noted a quadratic decrease in starch degradation for the other tested meals. Further, we observed a linear decrease in the rate of gas production with increasing mPS in each tested feed, except for pea meal, which had a quadratic relationship. For each 1 mm increase in mPS, the gas production was adjusted by -0.009 h-1 for corn, -0.011 h-1 for barley, -0.008 h-1 for wheat, and -0.006 h-1 for faba, whereas numerically greater adjustments were needed for oat (-0.022 h-1), rye (-0.017 h-1), and sorghum (-0.014 h-1). These mPS adjustment factors could be used to modify the starch-based feed energy values as a function of mean particle size, although in vivo validation is required

    Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    Get PDF
    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon extension requires F-actin turnover. The retraction of axons in response to the inhibition of F-actin turnover was dependent on myosin activity and regulated by RhoA and myosin light chain kinase. Significantly, the endogenous myosin-based contractility was sufficient to cause axon retraction, because jasp did not alter myosin activity. Based on these observations, we asked whether guidance cues that cause axon retraction (ephrin-A2) inhibit F-actin turnover. Axon retraction in response to ephrin-A2 correlated with decreased F-actin turnover and required RhoA activity. These observations demonstrate that axon extension depends on an interaction between endogenous myosin-driven contractility and F-actin turnover, and that guidance cues that cause axon retraction inhibit F-actin turnover

    Short communication: The effect of an exogenous enzyme with amylolytic activity on gas production and in vitro rumen starch degradability of small and large particles of corn or barley meals

    Get PDF
    The objective of this study was to evaluate the effect of exogenous amylase supplementation on gas production and on in vitro rumen starch degradability (IVSD) of different sized particles of corn and barley meals (Cm and Bm, respectively). An aqueous liquid amylase formulation from Bacillus licheniformis was tested at 3 enzyme doses (EnzD; 0, 300 and 1,500 kilo novo units/kg of dry matter) on small (<750 µm) and large (≥750 µm) particle size (PS) of Cm and Bm. Data were analyzed according to a randomized complete block design with a factorial arrangement of treatments; the main tested effects were PS, EnzD, and their interaction. Fermentation run entered in the model as random effect. The mixed rumen fluid was collected from 2 rumen-fistulated Holstein dry dairy cows fed at maintenance (forage:concentrate ratio of 80:20; 12% crude protein; 55% amylase-treated neutral detergent fiber). Small particles of both Cm and Bm had a greater rate of fermentation and shorter lag time than large particles. The rate of starch degradation was greater for small than for large particles of Bm, being 0.187 and 0.125 1/h, respectively. Conversely, the rate of starch degradation of Cm averaged 0.063 1/h and was similar among treatments. Enzyme supplementation tended to reduce lag time and to increase rate of fermentation for both PS of Cm and Bm, with a more pronounced effect for small PS. A limited EnzD effect was measured for IVSD data and rate of starch degradation; PS influenced fermentation parameters and the magnitude of starch degradation more than EnzD. Supplementation with exogenous amylase influenced the rumen fermentation pattern of small and large PS of Cm and Bm, even if the effect of the enzyme supplementation differed according to the PS of cereal meals

    In Vitro and In Vivo Assessment of a New Workflow for the Acquisition of Mandibular Kinematics Based on Portable Tracking System with Passive Optical Reflective Markers

    Full text link
    Clinical use of portable optical tracking system in dentistry could improve the analysis of mandibular movements for diagnostic and therapeutic purposes. A new workflow for the acquisition of mandibular kinematics was developed. Reproducibility of measurements was tested in vitro and intra- and inter-rater repeatability were assessed in vivo in healthy volunteers. Prescribed repeated movements (n = 10) in three perpendicular directions of the tracking-device coordinate system were performed. Measurement error and coefficient of variation (CV) among repetitions were determined. Mandibular kinematics of maximum opening, left and right laterality, protrusion and retrusion of five healthy subjects were recorded in separate sessions by three different operators. Obtained records were blindly examined by three observers. Intraclass correlation coefficient (ICC) was calculated to estimate inter-rater and intra-rater reliability. Maximum in vitro measurement error was 0.54 mm and CV = 0.02. Overall, excellent intra-rater reliability (ICC > 0.90) for each variable, general excellent intra-rater reliability (ICC = 1.00) for all variables, and good reliability (ICC > 0.75) for inter-rater tests were obtained. A lower score was obtained for retrusion with “moderate reliability” (ICC = 0.557) in the inter-rater tests. Excellent repeatability and reliability in optical tracking of primary movements were observed using the tested portable tracking device and the developed workflow

    Iodine carry over in dairy cows: effects of levels of diet fortification and milk yield

    Get PDF
    Thirty multiparous lactating cows were divided in three groups based on milk yield: high (H), average (A) and low (L). Within each group, cows were randomly allotted to two levels of iodine inclusions into the diet and respectively: level 1 (1): base diet containing 1.55 mg/kg dry matter, level 2 (2): base diet plus 47.2 mg/d. Potassium iodide was used. Feeds, orts, drinking water and individual milk samples were collected and analysed for the iodine content. The iodine concentration and total excretion in milk were affected by the level of iodine supplementation (P<0.05). No effect on milk iodine concentration could be addressed either to the level of milk yield or to the milk yield x treatment interaction. The total amount of iodine excretion and carry over were affected (P<0.05) by the level of milk yield
    • …
    corecore